董秀则, 杨鸿刚, 胡一凡, 于庚辰. 基于RF-Light GBM的分组密码算法识别方案[J]. 北京电子科技学院学报, 2025, 33(2): 1-10.
    引用本文: 董秀则, 杨鸿刚, 胡一凡, 于庚辰. 基于RF-Light GBM的分组密码算法识别方案[J]. 北京电子科技学院学报, 2025, 33(2): 1-10.
    DONG Xiuze, YANG Honggang, HU Yifan, YU Gengchen. Identification Scheme for Block Cipher Algorithms Based on RF-Light GBM[J]. Journal of Beijing Electronic Science and Technology Institute, 2025, 33(2): 1-10.
    Citation: DONG Xiuze, YANG Honggang, HU Yifan, YU Gengchen. Identification Scheme for Block Cipher Algorithms Based on RF-Light GBM[J]. Journal of Beijing Electronic Science and Technology Institute, 2025, 33(2): 1-10.

    基于RF-Light GBM的分组密码算法识别方案

    Identification Scheme for Block Cipher Algorithms Based on RF-Light GBM

    • 摘要: 密码算法的识别在密码分析领域中具有重要意义。目前主流分组密码算法识别方案中密文特征提取普遍基于随机性检测标准。为解决短样本识别需求以及进一步提高识别准确率,本研究提出了一种基于RF-Light GBM的分组密码体制识别方案。首先通过GM/T 0005-2021随机性检测标准提取密文特征,其次利用随机森林算法对高维的数据进行重要性排序和筛选,然后利用特征向量训练Light GBM算法模型构建密码算法识别分类器进行识别。实现了短样本环境下高效识别未知密文的识别需求。在两两识别实验中,与现有研究相比本方案准确率整体提升约12%;多分类实验显示准确率均在73%以上,验证了本方案在分组密码算法识别中的有效性和优势,为未来在更复杂的加密模式下进行密码算法识别提供了参考。

       

      Abstract: Cryptographic algorithm identification holds significant importance in the cryptanalysis field. In mainstream block cipher algorithm identifying schemes, the ciphertext feature extraction is typically based on randomness detection standards. To address the need for identifying short samples and further improve the identification accuracy, an identification scheme for block cipher systems based on RF-Light GBM is proposed in this paper. Firstly, ciphertext features are extracted according to the GM/T 0005-2021 randomness detection standard, and the Random Forest algorithm is utilized to rank and filter the importance of high-dimensional data. Then, feature vectors are used to train a Light GBM model to construct a cryptographic algorithm classifier for identifying. This method fulfills the need for efficiently identifying unknown ciphertexts under short sample conditions. The proposed scheme achieves an overall accuracy enhancement of about 12% in pairwise identification experiments, outperforming existing schemes. Multi-classification experiments show that the accuracy rates exceed 73%, verifying the effectiveness and superiority of the proposed scheme in block cipher algorithms identification, which provides a valuable reference for future cryptographic algorithm identifying under more complex encryption modes.

       

    /

    返回文章
    返回